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In this paper we present solutions from a Godunov-type algorithm to a selection of 
hydrodynamics test problems. Included in this selection are: implosions in planar, cylindrical, 
and spherical coordinates, piston problems with a variety of mesh configurations including 
the difficult Saltzman problem, interacting blast waves, and a spherical expansion on a 
rectangular mesh. These solutions have been obtained using CAVEAT, a three-dimensional 
arbitrary Lagrangian/Eulerian (ALE) hydrodynamics code that employs a Godunov method 
of solution with an approximate Riemann solver. First- and second-order solutions are 
presented for most of the problems and rezoned and Lagrangian solutions to the implosion 
(Noh) problem are compared. 0 1990 Academic press, IIIC. 

In this paper we present solutions from a Godunov-type algorithm to a selection 
of hydrodynamics test problems in which strong shocks occur. The test problems 
chosen have recently appeared in the literature or are considered to be standard test 
problems for hydrodynamics codes used at Lawrence Livermore National 
Laboratory and elsewhere. The purpose of this paper is to demonstrate the effec- 
tiveness and usefulness of the method when applied to problems involving a variety 
of computational difficulties including uneven mesh spacing, non-rectangular zones, 
oblique shocks, and complicated interactions of multiple shocks. For the purpose 
of comparing these results with results generated using other methods, wherever 
possible we use the same mesh spacing, initial conditions, and boundary conditions 
as have been used by others attempting to solve the same problems. We have not 
attempted to prove convergence by such techniques as mesh refinement. The 
method is in fact only as accurate as is the approximation to the equation of state 
used in the Riemann solver, and thus in application accuracy of the results depends 
on more than mesh size. 

In the Godunov approach all variables are assumed to be constant (first-order 
method) or linear (second-order method) within a computational cell. This results 
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in discontinuities throughout the mesh, which are resolved by solving a Riemann 
shock-tube problem corresponding to each cell face. This solution describes the 
shock wave, rarefaction wave, and contact discontinuity resulting from a discon- 
tinuity in one or more of the primary variables in a one-dimensional flow field. The 
cell face corresponds to the contact discontinuity, across which the density and 
internal energy can change but the velocity and pressure do not. The cell face then 
moves with the velocity of the contact discontinuity, and the solution is advanced 
in time using a conservative advection scheme. The approximate, non-iterative 
Riemann solver employed in the code was developed by J. Dukowicz [l], and is 
based on the two-shock approximation in which the rarefaction that develops as a 
result of the discontinuity is treated as a weak shock. This method is by its very 
nature well-suited to solving problems in which an actual discontinuity in the flow 
field exists, and the result is good resolution of strong shocks. The typical shock 
width is two or three computational cells. Because the Riemann solver used in 
CAVEAT is noniterative, the computational effort is roughly equivalent to that 
required for an artificial viscosity calculation. 

The following calculations were done using CAVEAT, a three-dimensional ALE 
(arbitrary Lagrangian/Eulerian) computer code that solves the Euler equations of 
motion for a compressible fluid. The code contains a rezoning algorithm that can 
be invoked to translate the mesh points at the end of a time step, thus maintaining 
even spacing throughout the mesh. Through the option of continuous rezoning 
(rezoning after each time step) the code can be run in an Eulerian or Lagrangian 
mode. A third option exists that can be called “rezoned Lagrangian” and involves 
specifying Lagrangian surfaces. As a Lagrangian surface deforms, points lying on 
the surface remain on the surface but can be rezoned with respect to one another. 
CAVEAT is thus well-suited to solving problems involving severe distortions, that 
is, problems in which Lagrange points that are initially evenly spaced are later 
spaced in a highly irregular way. 

The original two-dimensional version of CAVEAT was developed by the T-3 
group at Los Alamos National Laboratory in 1985 [2]. J. R. Baumgardner of 
LANL subsequently wrote a 3D version that was both faster and more storage- 
efficient, although it lacked many of the features of the original code. A new 2D 
version that is several times faster than its predecessor was adapted from this 3D 
code, and some missing features were restored. The code used in the following 
calculations is a version of Baumgardner’s 3D CAVEAT to which some additional 
features have been added, including the capability of running in a purely 
Lagrangian mode and of specifying the velocity on the boundary of a mesh. 
Differences in the versions of the code will be mentioned occasionally herein. 

The following report consists of three sections. Section 1 contains an overview of 
some of the major features of the code. A derivation of the approximate Riemann 
solver is given in Section 2, and in Section 3 we present results obtained for the 
chosen test problems. Most of these results were obtained by running the code in 
a purely Lagrangian mode. As an Eulerian code the method is somewhat more dif- 
fusive, as might be expected. Since the remapping phase of the algorithm currently 
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uses a simple nomterative rezoner which produces an evenly spaced mesh, a con- 
tinuously rezoned Lagrangian calculation is equivalent to an Eulerian calculation if 
the initial mesh spacing is regular and the boundaries are stationary. Thus the error 
induced in a Lagrangian calculation as a result of rezoning is of the same type as 
is seen in an Eulerian calculation, although it is not as severe if the boundaries are 
moving Lagrange surfaces. 

Two of the test problems discussed in Section 3 would lose their significance if 
rezoning were employed. The first of these is the Saltzman problem, which consists 
of a piston moving into a cylinder containing a uniform gas. The difficulty lies in 
the conliguration of the two-dimensional mesh, in which the vertical lines are not 
parallel to the piston and, hence, are not parallel to the shock that results from the 
motion of the piston. This problem is examined in more detail in the paper by 
Saltzman and Colella [4], in which they present a second-order Lagrangian 
Godunov solution obtained using an unsplit, corner-coupled algorithm. A similar 
piston problem is the Leblanc problem, a one-dimensional problem in which the 
mesh spacing in the direction of the motion of the piston (and shock) is uneven. In 
both of these cases rezoning would, after the first time step, transform the problem 
to a simpler one with an evenly spaced rectangular mesh. We hasten to add that 
this capability is beneficial under most circumstances, and it is only for the purpose 
of demonstrating the effectiveness of the Godunov method that we dispense with 
rezoning. 

1. FEATURES OF THE CODE 

All primary variables in CAVEAT such as velocity, pressure, density, and total 
and internal energies are stored at the centers of the computational cells. In the 
second-order calculation gradients are stored as well, and variables are assumed to 
be distributed linearly throughout the cell. This provides natural initial conditions 
for a Riemann problem at each cell face. Each cell consists of a single material, and 
material interfaces are assumed to coincide with cell faces. In the rezoned 
Lagrangian mode, material interfaces are treated as Lagrange surfaces, and 
interiors are rezoned to accommodate distortion of the boundaries. The velocities 
of vertices on Lagrange surfaces are calculated from the 12 surrounding face 
velocities using a least squares method. Face velocities are those provided by 
solution of the Riemann problem. Running in a purely Lagrangian mode requires 
calculation of the Lagrangian velocities of vertices in the interior of the mesh as 
well, and this is again done by a least squares method using the 12 surrounding face 
velocities. 

Although the mesh generator in CAVEAT can create spherical, cylindrical, or 
rectangular blocks of mesh, the locations of vertices are described in terms of x, y, 
and z coordinates, and cell-centered vector quantities have x, y, and z components. 
All cells are thus arbitrary hexahedra, and cells surrounding the origin of a sphere 
or lying along the axis of a sphere or cylinder have degenerate faces, i.e., faces with 
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zero area. The logically rectangular structure of the mesh is maintained throughout 
the calculation, and the initial connectivity of the mesh is maintained, so that the 
“nearest neighbors” of a vertex point do not change. 

CAVEAT solves three one-dimensional Riemann problems corresponding to the 
three logical mesh directions. For each face separating two cells, a one-dimensional 
Riemann problem in the direction normal to the face is solved. The velocities 
involved in this Riemann problem are the normal (to the face) components of the 
two cell-centered velocities. The resulting face velocity is therefore always in the 
direction normal to the face. A layer of ghost cells surrounds the mesh, and inflow, 
outflow, reflective (free slip or zero gradient), periodic, applied pressure, specified 
velocity, or internal boundary conditions are enforced by filling these ghost cells 
with the appropriate values of the cell-centered variables. This obviates satisfaction 
of boundary conditions by the Riemann solver, as every cell face appears to be in 
the interior of the mesh. The specified velocity boundary condition is an option that 
has been added at LLNL and as yet does not exist in other versions of the code. 
This boundary condition is necessary for all piston problems. 

CAVEAT is explicit and first-order accurate in time, and first- or second-order 
accurate in space, as specified by the user. Flux limiting reduces the spatial accuracy 
to first order locally, but suppresses oscillations in the second-order solution. The 
user can specify monotone or Van Leer limiting. Monotone limiting may be 
preferable for cases when Van Leer limiting results in unwanted oscillations; 
however, although some of the results presented in Section 3 do exhibit small 
oscillations, we have not found an example in which the oscillations were severe 
enough to warrant use of the more diffusive monotone limiting. Because the 
Riemann solver used in CAVEAT is noniterative, the computational effort is 
roughly equivalent to that required for an artificial viscosity calculation. The cost 
of a second-order solution is greater by a factor of three than the cost of a lirst- 
order solution, and a second-order solution increases the memory requirements. 
Thus the user may, particularly for problems for which the solution is expected to 
be smooth, choose to do a first-order calculation. In Section 3, we compare Iirst- 
and second-order solutions for several of the test problems. 

2. THE ALGORITHM 

The algorithm employed in CAVEAT breaks down into three steps: a 
Lagrangian solution of the momentum and work equations, a rezone step in which 
vertex velocities are chosen using a simple one-step noniterative rezoner, and a con- 
servative advection step in which quantities are remapped onto the new mesh. In 
this section, we present a brief discussion of the first of these three steps. A more 
complete derivation of the approximate Riemann solver used in CAVEAT can be 
found in Ref. [ 11. 

The Godunov method solves the Lagrangian form of the momentum and work 
equations: 
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dii, 

mkx=- Sk s 
pn dA (2.1) 

and 

di?k 
mk T= - 

I 
pu.ndA. so (2.2) 

Here mk is the cell mass, given by 

mk= s P dv, Vk 
the cell-averaged velocity is given by 

PU dv, 

and 

&=(&)i,p(P.+;U-U)dV 

is the cell-averaged total energy. In addition, p is the pressure, p is the density, e 
is the specific internal energy, u is the velocity, vk is a control volume, taken to be 
the kth cell in the calculations, and Sk is its surface. The unit vector normal to Sk 
is n. The pressure is assumed to be of the form 

P = P(P, e). (2.3) 

To advance the solution of (2.1) and (2.2) in time requires knowledge of the 
pressure and velocity on cell faces. To obtain these values, each pair of cells is 
treated as a Riemann problem, with initial conditions given by the cell-centered 
values of p, e, p, and u on either side of the face, where u is the component of the 
cell-centered velocity that is normal to the face. Thus, at the beginning of each time 
step, the cell face represents a discontinuity in some or all of these quantities. This 
discontinuity induces a shock, a rarefaction, and a contact discontinuity across 
which the density and internal energy may differ but the pressure and velocity are 
the same. Schematically, this can be represented by an x-t diagram, as is shown in 
Fig. 1. Lines A and B represent a pair of waves consisting of a shock and a rarefac- 
tion traveling outward from the original discontinuity, and line C is the contact dis- 
continuity, across which p* and u* do not change. CAVEAT uses an approximate 
Riemann solver to find the values ofp* and u*, after which the surface integrals in 
Eqs. (2.1) and (2.2) can be evaluated by summing over cell faces. 

One of the advantages of using a Riemann solver instead of artificial viscosity lies 
in the fact that solution of the Riemann problem requires no explicitly user- 
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FIG. 1. The system of waves representing the solution to the Riemann problem. 

specified parameters. Such parameters occur in the use of an artificial viscosity 
when one is forced to decide on values for coefficients of the linear and quadratic 
terms in an expression for q. The Riemann solver described herein instead contains 
two material-dependent parameters, which will be examined in greater detail below. 

We will use the notation q+ , q- to denote a quantity in front of and behind a 
shock, respectively, and the difference across the shock will be denoted by 6q. By 
rewriting the Rankine-Hugoniot relations, and by assuming that p = p(e, p), we 
can express Sp as 

(2.4) 

for a shock, and 

SP = I!I Id~P, du)l h (2.5) 

for a rarefaction. The choice between signs is made according to the direction of the 
shock or rarefaction. The choice between the two equations (shock or rarefaction) 
is made according to the sign of p+ - p- ; e.g., a shock to the right is described by 
dp = IfI &, while Sp = - 1 gl 6u describes a rarefaction to the left. For materials 
such as an ideal gas these two equations can be solved simultaneously for the 
pressure and velocity of the contact discontinuity between a shock and a rare- 
faction. However, for all but the simplest equations of state, it is difficult if not 
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impossible to find expressions for f and g. Two simplifying assumptions will thus be 
made. 

The two-shock approximation was first used in a Riemann solver by Colella [S]. 
By examining the Rankine-Hugoniot equations one can infer that 

Igl=lfl+o 6; 
( ) 

(2.6) 

Thus for relatively weak waves, the shock-Hugoniot (the p versus p curve that 
results when the velocity is eliminated from the Rankine-Hugoniot relations) is a 
good approximation to the rarefaction-Hugoniot. Furthermore, rarefactions can be 
expected to be weak (no steep gradients) even when the corresponding shocks are 
strong. Therefore, we will assume that the system consists of two shocks and a 
contact discontinuity. 

The next step is to find an approximate form for the shock-Hugoniot. Consider 
the use of artificial viscosity, in which the cell pressure used in the momentum and 
energy equations is given by 

PI = P + 4, (2.7) 

where p is the usual pressure and q is a function of the velocity gradient. One com- 
monly used form for q, which has the effect of a bulk viscosity, is a combination 
of the Von Neumann quadratic form [6] and a linear form suggested by Landshoff 
c71: 

q = c;p Au2 + C,pao [Aul. (2.8) 

There is some uncertainty in the choice of the coefficients, but the usual choices are 
C,z2 and CL% 1. 

For two cases in which the equation of state is simple enough to find an expres- 
sion for 1 f 1 (an ideal gas and an elastic solid), the resulting expressions for 6p are 
very similar to the quadratic and linear forms used for q, for strong and weak 
shocks, respectively. This similarity has been used occasionally to find values for the 
artificial viscosity coefficients C,, and CL. Reversing this process, assume that the 
shock-Hugoniot takes the form 

c&2 6u2 + C,pafJ 16ul, (2.9) 

where a, is the local sound speed, and use 

Ifl= da+A IW) (2.10) 

for 1 f 1, where a is obtained from the weak shock limit and A from the strong shock 
limit. 

From the Rankine-Hugoniot relations, we can deduce that 

a=a,, the local sound speed, 
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k/P+) 
IW/~O 4 ‘2 (P-/P+)- 1 1 . 
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(2.11) 

For an ideal gas, 

P- Y+l -=- 
P+ Y-l 

in the strong shock limit, so A = (y + 1)/2. Here y has the same value as in the ideal 
gas equation of state p = (y - 1) pe. This approximation to the shock Hugoniot is 
excellent for a variety of materials. Comparisons with experimental Hugoniot data 
and further justification of the approximation can be found in Ref. [ 11. 

For rightward propagating waves, we now have 

PL-PR=pR(a+A(uL-uR))(uL-uR) (2.12) 

and this is the equation for either a shock or a rarefaction. If the wave is a rarefac- 
tion, then this expression is only valid for 6~ > -u/2A, and so we rewrite this as 

PL-P~=PRA IUL-UZinl (UL-U&nh (2.13) 

where 

a2 
P~~=PR-~PR~ 

and 

a 
U~in = UR -2A. 

For leftward propagating waves, the analogous equation is 

PR-Pt= -PLA ~UR-~~ax~ ("R-u:ax)~ 

where 

a2 
P:=PL-$Lz 

(2.14) 

* a 
%ax =UL+g. 
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If these two equations represent the solution to a Riemann problem, then 

and these are the pressure and velocity of the contact discontinuity. These 
equations can be rewritten, since 

and 

p*-p$=PRA lU*-U&nI (24*-U&n), (2.15) 

p* - pt = - p,A 124* - u:,,j (u* -z&& (2.16) 

Equations (2.15) and (2.16) can now be solved simultaneously for u* and p*. By 
considering cases and assuming signs for Iu* - U~inI and 1 u* - uzaXl, elimination of 
p* results in a quadratic equation for u *. This can be solved in the usual 
straightforward way, and back substitution of u* can then be used to find p*. 
Cavitation is predicted when p* < 0, in which case p* can be set equal to 0, and the 
two equations for u* can be solved for the velocities of the two resulting faces. 

3. TEST PROBLEMS 

The first test problem chosen was a Noh problem (implosion) on a regular 
rectangular mesh. This is a one-dimensional problem in which a confined volume 
of gas has initial density one and zero internal energy. Since CAVEAT is a 3D code, 
the problem is run on a 100 by 1 by 1 mesh, and the boundaries corresponding to 
y and z equal to zero and one are reflective (zero-gradient). The initial velocity is 
minus one in the interior and on the right, and a reflective boundary condition is 
applied on the left. As the gas becomes compressed at this wall, a shock forms at 
the left boundary and moves from left to right. Using a y-law equation of state with 
y equal to $, the correct density profile is given by p = 4 behind the shock and p = 1 
in front of the shock. A complete discussion of this problem in rectangular, cylindri- 
cal, and spherical geometries can be found in the report by Noh [S]. 

The density plots shown in Figs. 2 and 3 were made at approximately t = 0.6, 
when the right wall has reached x = 0.4 and the shock has reached x = 0.2. In Fig. 2, 
first-order solutions with and without rezoning are compared, and in Fig. 3, a 
second-order solution without rezoning is shown. As would be expected, the 
rezoned solution is more diffusive than the first-order solution without rezoning, 
which is smoother than the second-order solution. The second-order solution, while 
exhibiting greater error at the wall, contains an extremely well-resolved shock. This 
error at the wall, which is generally referred to as wall-heating or wall-cooling 
(depending on the sign of the error in the specific internal energy), appears in most 
solutions to problems involving a non-physical impulsive start. This is true of not 
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FIG. 2. The Noh problem on a regular rectangular mesh; first-order solutions with and without 
rezoning. 

only Godunov solutions but other Lagrangian solutions as well. A discussion of 
this effect, which occurs at the location of the formation of the shock, can be found 
in the paper by Noh [9]. In this paper, Noh suggests an “artificial heating” correc- 
tion to reduce the error; however, this correction does not affect the error 
throughout the rest of the domain. For this reason, we have chosen to ignore the 
problem of wall-heating. 

A density profile and initial and final mesh plots are shown (Figs. 4 and 5) for 
the same problem on a cylindrical mesh. Now the exact solution is given by p = 16 
for r < 0.2 (behind the shock), p = 4 for r = 0.2+ (in front of the shock), and 
p = 1 + t/r for 0.2 < r < 0.4. Th e b ro k en line in Fig. 4 is p = 16, and it can be seen 
that this first-order solution without rezoning has a relative error of about 4% 
behind the shock. 

timr- 0.61948; 100 calls: order=?. 

FIG. 3. The NC h problem on a regular rectangular mesh; second-order solution without rezoning. 
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FIG. 5. Initial and final mesh plots for the cylindrical Noh problem. 
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FIG. 7. Spherical Noh problem; mesh configuration at t = 0.6. 
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FIG. 13. Initial mesh configuration for the Saltzman piston problem. 

Figures 6 and 7 show the same information for the Noh problem on a spherical 
mesh. The exact value of the density behind the shock is now 64, which is indicated 
by the broken lines in both of the plots in Fig. 6. Here both first- and second-order 
solutions were obtained, with the result that the first-order solution, while being 
smoother, has both a greater error at the left wall and a greater error just behind 
the shock. Problems with the dimensions of cells surrounding the origin prevent 
line enough zoning to produce a more accurate result to this problem. A more 
sophisticated mesh generator is being developed that will, we hope, improve the 
quality of the solution. 

The next three test problems are piston problems, and differ only in the mesh 
used. In each of these problems, a cylinder is filled with a uniform y-law gas that 
is initially at rest. As a piston moves in from the left, a shock forms and moves out 
ahead of it. In each of these three problems, the correct value of the density behind 
the shock is four, and the undisturbed gas in front of the shock has a density of one. 
Figures 8 and 9 contain time-histories of the densities for an evenly spaced mesh 
with 40 zones. The solution is first-order in Fig. 8 and second-order in Fig. 9. 
Rezoning is not done in these or any of the piston calculations. In the first frame 
in Fig. 8, the piston has moved in to x= 23, and the shock has moved 
approximately three quarters of the way down the cylinder. The shock hits the right 

FIG. 14. The Saltzman mesh at t=O.375. The vertical line indicates the location of the shock at 
x = 50, halfway across the original mesh. 
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FIG. 15. A closeup of the Saltzman mesh behind the shock at I = 0.375. The vertical line indicates 
the location of the shock at x = 50. 
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FIG. 16. Density contours superimposed on Fig. 15. 
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FIG. 17. The mesh behind the shock resulting from the second-order solution of the Saltzman 
problem. As in Fig. 15, t = 0.375. 
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FIG. 18. Density contours superimposed on Fig. 17. 
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FIG. 19. The actual configuration of the Saltzman mesh with large aspect ratio cells at t = 0.5. 

wall at t = 3 (not shown) and is reflected. As can be seen by comparing Fig. 8a with 
Fig. 2a, the accuracy of the results is consistent with that obtained for the 
rectangular Noh problem. These two problems are physically equivalent, differing 
only in the location of the stationary frame of reference. Again, the greatest error 
occurs at the location at which the shock first forms, this time at the moving wall. 

Figure 10 shows the initial mesh configuration used next. As in the previous case, 
there are 40 cells in the horizontal (x) direction, but now the cell widths increase 
by 15 % in the left half of the mesh (dx(n + 1) = l.lMx(n) for n < 20) and decrease 
by 15% in the right half. This problem, sometimes called the Le Blanc problem, is 
also discussed in Ref. [9], although most of the results presented therein are for a 
less severely varying mesh having a 5 % gradient in cell widths rather than 15 %. 
In contrast to the previous problem, in which the first-order solution on the evenly 

FIG. 20. The mesh in Fig. 19 has been scaled using a post-processor; f = 0.5. 
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contours of density 
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FIG. 21. Density contours superimposed on Fig. 20. 
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spaced mesh was more aesthetically pleasing due to small oscillations in the second- 
order solution, it is evident in this case that the second-order solution shown in 
Fig. 11, having a relative error of approximately 7 % behind the shock, is preferable 
to the first-order solution shown in Fig. 12. The lirst-order solution is, however, 
considerably more accurate than that presented in Ref. [9], in which the error in 
the density behind the initial shock is as great as 40%. 

Among the three piston problems discussed in this report, the most difficult is 
undoubtedly the Saltzman problem [4]. Unlike the two preceding cases, the 
Saltzman problem is made two-dimensional by the configuration of the mesh, 
which is shown in Fig. 13. In the lower diagram, the figure has been rotated around 
the x-axis to show the actual 100 by 10 by 1 mesh. The initial length of the cylinder 
is 100. At time 0.375, the piston (the left wall) has moved in to x = 37.5, and the 
shock has traveled from x = 0. to x = 50., across half the length of the original cylin- 
der (Fig. 14). A blowup of the portion of the mesh behind the shock is shown in 
Figs. 15 and 16, and density contours are superimposed on the mesh in Fig. 16. 
Figures 17 and 18 illustrate the second-order solution with Van Leer limiting. The 
location of the shock, as is indicated in Fig. 17, is again at x = 50. Although other 
solutions to this problem have not as yet appeared in the open literature, the 
problem has generated considerable interest at LLNL, Los Alamos National 
Laboratory, and elsewhere. 

To test the capability of the code to handle large aspect ratio cells, the mesh was 
stretched in the y direction to produce cells with aspect ratio 1000. Figure 19, which 
resembles a thick vertical line, is actually a picture of the initial mesh after it has 
been compressed in the x direction and stretched in the y direction. To view the 
density contours resulting from running the problem on this mesh, the figures are 
scaled using a post-processor. The results, shown in Figures 20, 21 and 22, show 
that this has, in fact, improved things considerably. As can be seen in Fig. 21, the 
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densities are now so uniform across the width of the mesh (from the top to the 
bottom) that is is meaningful to examine a density profile taken along the y = 5. line 
(Fig. 22). The companion problem in which cells have aspect ratio 0.001 is far more 
difficult, and satisfactory results have not been obtained by use of a Godunov 
method or any other method known to us. 

The interaction of two blast waves is illustrated by the next set of results. The 
initial condition for this one-dimensional problem consists of a closed volume of 
y-law gas (with y equal to 1.4) that is of uniform density but nonuniform pressure 
and temperature. The pressure is initially 1000 near the left wall, 100 near the right 
wall, and 0.01 in the center. The specific internal energies correspond to these 
pressure values. The mesh consists of 200 uniform zones. The time-history of the 
density profile shown in Fig. 23 was obtained with a first-order calculation, and the 
second-order method was used to obtain the results presented in Fig. 24. The Van 
Leer limiting was used in this second-order calculation even though it does allow 
undesirable spikes to appear after the blast waves have interacted. The more dif- 
fusive monotone limiting produced results that resembled the first-order solution. 

Nearly exact results for this problem were calculated in a review article by 
Woodward and Collela using a PPMLR scheme and treating the three regions 
described above as distinct fluids [9]. In their calculation, that portion of the 
solution preceding the interaction of the blast waves was calculated exactly. 
Subsequently the mesh, consisting of 3096 zones, was refined near the contact 
discontinuities and near the location of the collision of the two shocks. This 
solution was used as a benchmark, and results obtained using seven numerical 
methods, including a first-order Godunov scheme, were compared in their paper. 
Two calculations are shown for each method, one in which the mesh consisted of 
200 equally spaced zones, and one in which the mesh consisted of 1200 equally 
spaced zones. 
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FIG. 25. A spherical expansion on a rectangular mesh. 

Unfortunately it would be impractical to include all of their figures in this paper, 
but the results can be described qualitatively. The method described herein perfor- 
med considerably better than any of the methods used in their paper on the 200- 
zone mesh. Only their PPMDE and PPMLR methods came close to reproducing 
the correct height of the peaks, sharpness of the shocks, and preservation of the 
structure of the solution. Their solutions, however, did not contain the spike that 
formed at approximately x = 8, or any of the spikes that appear in the second-order 
CAVEAT solution. Their methods all produced significantly better results when the 
1200-zone mesh was used; however, CAVEAT still outperformed the first-order 
Godunov and MacCormack schemes. 

The final test problem consists of a spherical expansion on a rectangular mesh. 
This problem is included only as a demonstration of the ability of the code to main- 
tain the symmetry of the shock as it distorts the mesh. The initial mesh is a cube 
containing 15,625 uniform cubic cells. A 10 by 10 by 10 block of cells nearest the 
origin (located in a corner of the mesh) is loaded with material having a density 
three times that of the remainder of the mesh. This density gradient causes a shock 
to form and travel outward from the center. Reflective (zero gradient) boundary 
conditions are employed on all sides of the mesh. 

In Fig. 25 the shock has progressed about three-quarters of the way across the 
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FIG. 26, Density contours superimposed on Fig. 25, rotated to show the x - y plane. 

mesh, and corresponding density contours are shown in Fig. 26. The symmetry 
of the solution is more easily ascertained from Fig. 27, in which quarter-circles 
centered at the origin have been drawn on the mesh. Densities are the same at all 
of the points indicated by dots, and thus the density contour through these points 
misses being spherical by less than 3 %. The solution is symmetric in X, y, and z. 

4. CONCLUSIONS 

In this paper we have demonstrated the ability of CAVEAT to solve a selection 
of hydrodynamics test problems. First-order, second-order, and rezoned versus 
Lagrangian solutions were compared. The solutions were obtained using a three- 
dimensional version of the code that uses a Godunov method with an approximate 
Riemann solver. Although CAVEAT permits periodic or continuous rezoning as an 
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FIG. 27. The indicated points have the same densities. The curves drawn on the mesh are quarter- 
circles centered at the origin. 

option, rezoning was avoided where it would simplify the problem, as in the case 
of the Saltzman piston problem. There were few surprises in the results: rezoning 
was found to result in diffusive errors of the type encountered in Eulerian solutions, 
first-order solutions were smoother, and second-order solutions were more 
accurate. 
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